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Abstract— This study explores the challenge of sim-to-real
transfer, focusing on how discrepancies between simulated en-
vironments and real-world conditions affect agent performance.
Using the CartPole environment as a test base, we examine the
effects of various simulation modifications, including friction
dynamics, observation noise, and curriculum learning. We em-
ploy Proximal Policy Optimization (PPO) to train policies under
different conditions, comparing performance between agents
trained with standard environments, domain randomization,
and progressive difficulty adjustments (curriculum learning).

Our experimental results show that while domain randomiza-
tion improves generalization in environments with unseen varia-
tions, curriculum learning provides a smoother progression but
does not always outperform direct training in harder conditions.
We further evaluate the robustness of trained models by
introducing unseen friction values and dynamic environmental
perturbations. This exploratory work highlights the strengths
and limitations of different sim-to-real strategies, providing
insights into the adaptability of reinforcement learning agents
under varying simulation complexities.
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I. INTRODUCTION
Robotic systems trained in simulated environments often

fail to achieve adequate performance when deployed in real-
world settings due to discrepancies in physical dynamics,
sensor inaccuracies, and environmental variability. Bridg-
ing this sim-to-real gap is critical for applications such
as autonomous driving, industrial automation, and service
robotics, where operational precision and adaptability are
non-negotiable.

Proximal Policy Optimization (PPO), recognized for its
balance between computational simplicity and sample effi-
ciency, serves as a strong foundation for training robust poli-
cies in reinforcement learning (RL). Domain randomization,
a technique that systematically varies simulation parameters
(e.g., friction, noise, and dynamics) during training, further
enhances the generalizability of learned policies by exposing
agents to a diverse set of simulated conditions.

In this work, we extend and integrate these concepts by:
1. Implementing a PPO-based framework with an en-

hanced domain randomization protocol.
2. Performing a comparative performance analysis of poli-

cies trained under standard, randomized, and progressively
difficult environments.

3. Developing a scalable and adaptive simulation frame-
work to evaluate the robustness of RL agents against real-
world uncertainties.

Our contributions aim to explore how dynamic adjust-
ments in simulation parameters impact policy performance,
providing insights into the strengths and limitations of do-
main randomization and curriculum learning for sim-to-real
transfer.

II. RELATED WORK

Sim-to-real transfer is a pivotal concern in robotics, where
the goal is to leverage the efficiency of simulations for robust
real-world applications. The PPO algorithm has been instru-
mental in advancing reinforcement learning, particularly due
to its effectiveness in environments with high-dimensional
action spaces [1]. On the other hand, domain randomization
has been proposed as a technique to improve the transferabil-
ity of simulation-trained models by introducing variability in
simulation parameters such as lighting conditions, textures,
and physical properties [2]. While these approaches have
independently shown promise, there is a gap in research that
combines these methods with adaptive algorithms to address
the dynamic nature of real-world environments. Our work
builds on these foundations and addresses existing gaps by:

1. Integrating PPO with a dynamic domain randomization
protocol that adjusts simulation parameters over time.

2. Exploring the impact of progressively challenging en-
vironments (curriculum learning) on policy robustness.

3. Conducting an extensive comparative analysis to evalu-
ate generalization across different environmental variations,
such as varying levels of friction and observation noise.

By systematically combining domain randomization, PPO,
and curriculum learning, our study provides new insights into
creating more resilient and adaptable policies for sim-to-real
transfer tasks.

III. METHODS

A. PPO Implementation

Our implementation of Proximal Policy Optimization
(PPO) optimizes a clipped surrogate objective function to
ensure stable and controlled updates during training [1]. The
clipping mechanism constrains the policy updates, preventing
large deviations from previous policies, which is particularly



advantageous when combined with domain randomization.
By systematically exposing the policy to a variety of con-
ditions, the clipped objective enables stable learning across
diverse scenarios without overfitting to any single environ-
ment.

To integrate domain randomization effectively, we dynam-
ically adjust the environmental parameters at the start of
each training epoch. This process ensures that the policy
continually adapts to new conditions, mimicking incremental
learning observed in natural and engineered systems. Such an
approach encourages the development of generalized policies
capable of handling a wide range of dynamic and uncertain
real-world environments.

B. Domain Randomization Implementation

Our domain randomization strategy dynamically varies
key simulation parameters at the start of each episode. By
introducing controlled stochasticity into the environment,
the agent encounters a diverse range of training conditions,
improving its generalizability and robustness. The following
parameters were randomized within empirically chosen, re-
alistic bounds to reflect potential real-world variations:

Gravity: Simulate gravitational inconsistencies.
Pole Mass: Reflecting changes in mechanical properties.
Cart Friction: Introducing resistance to cart movement.
Sensor Noise: Gaussian noise with a standard deviation of

0.5 was added to observations to simulate sensor inaccura-
cies.

C. Environment Setup

We used the CartPole-v1 environment as a baseline for
initial testing due to its simplicity and widespread use as
a benchmark in reinforcement learning studies. To enhance
the realism of the simulation, we extended the standard
CartPole environment by introducing frictional dynamics and
parameter variability, as described above.

To test the effectiveness of our training methods, we cre-
ated a customized version of CartPole, named CartPoleWith-
Friction, where velocities of the cart and pole are dampened
to simulate energy loss. Randomized environments were con-
figured by dynamically adjusting the simulation parameters
at runtime. This extended environment setup serves as an in-
termediate step toward bridging the sim-to-real gap, allowing
us to evaluate the adaptability and generalizability of PPO-
based policies under increasing environmental complexity.

D. Training Procedure

We trained and evaluated two sets of models for compar-
ative analysis:

Standard Environment: Policies were trained in the un-
modified CartPole-v1 environment with fixed parameters.

Randomized Environment: Policies were trained in our
domain-randomized environment, where key parameters
were varied across episodes.

Each model was trained for 10,000 timesteps, with peri-
odic evaluations conducted to monitor training progress and
performance. We adjusted critical hyperparameters such as

the learning rate and clipping range based on training feed-
back to ensure optimal convergence. Figure 1 illustrates the
training progress of the model in the standard environment.

Fig. 1: Training Progress

E. Evaluation Protocol

Our evaluation focuses on both the average reward and the
variability of rewards across episodes, providing a dual per-
spective on the effectiveness and consistency of the trained
policies. This comprehensive evaluation helps in assessing
not only the peak performance but also the reliability of the
policies under varying conditions.

IV. DETAILED FINDINGS

A. Domain Randomization Results

In the domain randomization tests, the models trained
in randomized environments outperformed those trained in
standard environments when tested in both settings. Figure 2.
Key observations include:

• In the randomized environment, the standard-trained
model achieved a mean reward of 397.36 with a stan-
dard deviation of 107.91. In contrast, the randomized-
trained model showed improved performance with a
mean reward of 411.74 and a standard deviation of
132.42.

• In the standard environment, the standard-trained model
recorded a mean reward of 406.14 with a standard de-
viation of 102.15, while the randomized-trained model
exhibited a superior mean reward of 420.32 and a
standard deviation of 103.42.

These results underscore the improved generalization ca-
pabilities of policies trained with domain randomization,
achieving higher rewards and adaptability across diverse
settings.



(a) Standard Training (b) Randomized Training

Fig. 2: Domain Randomization Results

B. Sim-to-Sim Training with a More Complex Environment

When subjected to a more complex environment featuring
additional simulation parameters, the findings were presented
in Figure 3, and specifically:

• The standard-trained model achieved a mean reward of
349.6 and a standard deviation of 60.77.

• The randomized-trained model showed an enhanced
performance with a mean reward of 363.1 and a stan-
dard deviation of 51.89.

Further exploration involved fine-tuning both models in
this complex environment, yielding significant improve-
ments:

• The fine-tuned standard model dramatically increased
its performance to a mean reward of 497.8 with a
minimal standard deviation of 7.46.

• The fine-tuned randomized model also improved,
achieving a mean reward of 483.3 with a standard
deviation of 24.64.

Fig. 3: Sim-to-Sim Evaluation Result.

These results highlight the importance of fine-tuning poli-
cies in increasingly complex settings, where initial training
provides a strong foundation, and subsequent adaptation
maximizes performance.

C. Exploration in Noisy Environments

The robustness of the models was evaluated in environ-
ments with varying levels of sensor noise (Figure 4):

Fig. 4: Performance in Noisy Environments.

1) High-Noise Environment: In high-noise settings, the
results indicated that:

• The Standard-Trained Model achieved a mean reward
of 243.05 with a standard deviation of 100.74, reflecting
a considerable decrease in performance under challeng-
ing conditions.

• The Randomized-Trained Model performed better,
with a mean reward of 299.75 and a standard deviation
of 107.04. This suggests that the randomized training



approach enhances the model’s ability to handle unex-
pected environmental noise.

2) Low-Noise Environment: In environments with lower
levels of noise, both models exhibited improved perfor-
mance, yet the randomized-trained model still showed a
slight advantage:

• The Standard-Trained Model recorded a mean reward
of 345.8 and a standard deviation of 81.22, demonstrat-
ing respectable robustness in more controlled settings.

• Conversely, the Randomized-Trained Model achieved
a mean reward of 352.95 with a standard deviation of
117.60, indicating not only better performance but also
a higher variability in reward distribution, which could
suggest a greater adaptability to subtle environmental
variations.

3) Analysis and Implications: The results indicate that
domain randomization enhances the model’s ability to handle
noisy and uncertain observations, achieving higher rewards
under both high and low noise conditions. However, the
increased variability (higher standard deviation) observed in
the randomized-trained model suggests a trade-off between
robust adaptability and performance consistency. This trade-
off warrants further exploration to optimize stability while
maintaining generalization capabilities.

V. SUMMARY OF FINDINGS

Our findings demonstrate the effectiveness of domain
randomization and its impact on model performance across
a variety of test conditions:

• Domain Randomization: Policies trained with domain
randomization consistently outperformed standard-
trained models in both standard environments and ran-
domized environments.

• Complex Environments: Fine-tuning models in increas-
ingly complex simulations significantly improved per-
formance, showcasing the potential of incremental adap-
tation for sim-to-real transfer.

• Noisy Environments: Randomized-trained models ex-
hibited greater resilience to sensor noise, achieving
higher rewards compared to standard-trained models.
However, variability in performance (higher standard
deviation) suggests a need for balancing adaptability
and consistency.

Overall, the results validate the hypothesis that training with
domain randomization enhances model generalization and
robustness, preparing policies to handle real-world variability
and uncertainties more effectively.

VI. LIMITATIONS AND FUTURE WORK

A. Real-World Testing Constraints

A significant limitation of this study is the inability to
test the trained models in real-world environments due to
time and resource constraints. While simulated environments
incorporating domain randomization and curriculum learning
offer valuable insights, they remain approximations of real-
world physics and sensor characteristics. The absence of

real-world validation highlights a need for further testing to
confirm the practical applicability of the learned policies.

B. Exploration of Curriculum Training

Curriculum training was explored as a method to gradually
introduce challenges to the model, starting with easier tasks
and progressively moving towards more complex scenarios.
The hypothesis was that this approach would lead to a more
robust learning process, enabling the model to adapt better
to different levels of difficulty. However, the results were
unexpected, as both the curriculum-trained model and the
baseline model achieved the maximum reward of 500.0, with
a standard deviation of 0.0 in both low and high friction
environments Figure 5.

Fig. 5: Curriculum Training Result

1) Analysis of Maximum Reward Achievement: The uni-
form success of both models suggests the following expla-
nations:

• Saturation of Learning Capacity: The CartPole task
may lack sufficient complexity to challenge the models
beyond a basic skill threshold. Both models may have
quickly reached their optimal performance due to the
simplicity of the environment.

• Insufficient Differentiation in Curriculum Stages:
The progression of curriculum stages might not have
introduced sufficient incremental challenges. If the dif-
ficulty increases too gradually or fails to test the agent’s
adaptation abilities, the curriculum provides limited
benefit over direct training.

2) Implications and Further Research: These findings
highlight the importance of carefully designing curriculum
stages to ensure meaningful learning progression. Future
work will involve:

• Developing tasks with greater environmental complexity
to prevent premature convergence to optimal perfor-
mance.

• Introducing more distinct and challenging stages to
better assess adaptability.



VII. APPENDIX

A. Variability in Model Performance

While models trained with domain randomization gener-
ally demonstrated superior performance, variability in results
was observed across different conditions. Notably, in high-
noise environments, the standard-trained model occasionally
outperformed the randomized-trained model, suggesting lim-
itations in the robustness and consistency of the randomized
policies.

1) Potential Reasons for Performance Variability: Several
factors may explain the observed fluctuations:

• Overfitting to Randomized Conditions: While domain
randomization exposes the model to a range of dy-
namics, there is a risk of overfitting to specific types
of noise or randomness encountered during training.
This can limit the model’s ability to generalize to
underrepresented conditions.

• Algorithmic Stability: The inherent sensitivity of PPO
to initial conditions and hyperparameter settings can
impact training stability. Suboptimal configurations may
lead to inconsistencies in performance, particularly un-
der high variability.

2) Implications and Further Research: Addressing these
limitations requires a focus on improving model stability and
generalization. Future research could include:

• Enhanced Generalization: Implementing techniques
such as cross-validation within the training process
to better generalize across different noise profiles and
environmental conditions.

• Hyperparameters Tuning: Systematic hyperparame-
ter tuning and sensitivity analysis could help identify
optimal settings that minimize performance variability
across different training scenarios.

• Algorithmic Enhancements: Exploring adaptive learn-
ing rates or alternative RL algorithms (e.g., SAC or
TRPO) that may exhibit greater stability under chal-
lenging conditions.
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